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Uncertainty Propagation for Turbulent,
Compressible Flow in a Quasi-1D Nozzle
Using Stochastic Methods

Lionel Mathelin,* M. Yousuff Hussaini," Thomas A. Zang* and Francoise Bataille

This paper describes a fully spectral, Polynomial Chaos method for the propaga-
tion of uncertainty in numerical simulations of compressible, turbulent flow, as well
as a novel stochastic collocation algorithm for the same application. The stochastic
collocation method is key to the efficient use of stochastic methods on problems with
complex nonlinearities, such as those associated with the turbulence model equations
in compressible flow and for CFD schemes requiring solution of a Riemann problem.
Both methods are applied to compressible flow in a quasi-one-dimensional nozzle.
The stochastic collocation method is roughly an order of magnitude faster than the
fully Galerkin Polynomial Chaos method on the inviscid problem.

Introduction

An admittedly small but nevertheless noticeably
accelerating trend within the Computational Fluid
Dynamics (CFD) community is changing the vision
of computational aerodynamics from one of produc-
ing a solution as accurately as possible to one of
producing a solution with acceptable uncertainty
bounds. Most of the effort of the traditional CFD
community has been focused on discretization error
and turbulence modeling error. Some of the early
advocates of a broader perspective on CFD uncer-
tainty were Mehta,! Roache,? Coleman and Stern®
and Oberkampf and Blottner.* In the past half-
dozen years there have been several events which
have served to increase awareness of the broader
perspective on CFD uncertainty: (1) the publica-
tion of the American Institute for Aeronautics and
Astronautics guidelines on the verification and vali-
dation for CFD;% (2) the Drag Prediction Workshop
sponsored by the ATAA Applied Aerodynamics TC;%
and (3) the pair of sessions on CFD uncertainty at
the January, 2003 ATAA Aerospace Sciences Meet-
ing.” 1 The work of Oberkampf, Deigert, Alvin and
Rutherford?® and Oberkampf and Trucano?! is es-
pecially notable for proposing a framework for char-
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acterization of uncertainties. Walters and Huyse??
have provided a tutorial on uncertainty methods
aim at a CFD audience. Hemsch, Luckring and
Morrison'® have presented a comprehensive vision
for approaching computational aerodynamics uncer-
tainty. (Their choice of title is noteworthy in that
their vision is not confined to Euler and Navier-
Stokes methods but embraces the use of simpler
aerodynamic models.) Zang, et al®> have outlined
the needs and opportunities for uncertainty quantifi-
cation and optimization under uncertainty research
for aerospace applications.

Some, but by no means all of the uncertainties
affecting CFD are reasonably described in proba-
bilistic terms. (See Oberkampf, Helton and Sentz?*
for a general mathematical framework for describ-
ing uncertainties.) Our focus in this work is on
stochastic methods for quantifying those uncertain-
ties which can be described by probability density
functions (PDFs). A fundamental task for these
methods is to propagate prescribed uncertainty dis-
tributions on the input parameters, e.g., bound-
ary conditions, or code parameters, e.g., turbulence
modeling coefficients, through the CFD code to the
output field variables and ultimately to the relevant
output functionals of the simulation. Standard sam-
pling techniques, such as Monte Carlo, are “exact”
methods for accounting for this type of uncertainty
quantification in the sense that they do not require
any approximations of the CFD analysis nor any as-
sumptions on the input PDFs. Moreover, sampling
techniques provide the full set of output statistics,
albeit with obvious limitations on accuracy related
to the number of samples. However, standard Monte
Carlo is clearly intractable for large CFD problems
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as it easily requires thousands of simulations for
meaningful results. Although more sophisticated
sampling techniques such as importance sampling
and Latin hypercube sampling are well-established,
we are unaware of any attempts yet to use these for
CFD applications. Cao, Hussaini and Zang?® have
recently presented a non-standard variance reduc-
tion technique that exploits sensitivity derivatives.
They demonstrated that it reduces the sampling re-
quirements by at least one order of magnitude on an
aircraft wing structural application. This approach
seems ideally suited to CFD applications with a
large number of input uncertainty variables provided
that the CFD code can produce efficient sensitivity
derivatives.

The moment methods are an efficient approximate
approach. They involve expanding the variables of
the problem in terms of Taylor series around their
mean value.?6 This technique allows for a quick es-
timation of the low-order statistics, but requires at a
minimum an efficient procedure for computing first-
order sensitivity derivatives.

In this paper we explore the use of a stochastic
PDE approach, i.e., adding one or more stochas-
tic variables to the deterministic CFD equations,
as an alternative to sampling techniques. Xiu and
Karniadakis?” 2° pioneered the stochastic PDE ap-
proach to uncertainty quantification for CFD. They
used a (generalized) Polynomial Chaos (PC) ex-
pansion method. This is based on the homoge-
neous chaos expansions introduced by Wiener?® and
extended and applied extensively by Ghanem and
Spanos®32 for stochastic PDE solutions to struc-
tural problems. Walters and Huyse?? include Poly-
nomial Chaos examples in their tutorial. Walters'*
has explained how to deal correctly with the grid
movement terms necessary to compute the effects
of geometric uncertainties in Polynomial Chaos ap-
plications. Our contributions here are (1) the ex-
tension of the CFD Polynomial Chaos approach to
include a two-equation turbulence model and (2)
a discussion of an alternative stochastic PDE ap-
proach, called Stochastic Collocation (SC), that we
have recently developed.?®3* The demonstrations of
these methods are given for a quasi-one-dimensional
nozzle flow.

Stochastic PDE Fundamentals

The basic idea of the Polynomial Chaos approach
is to project the random variables of the problem
onto a stochastic space spanned by a set of complete
orthogonal polynomials ¥ that are functions of a
random variable £(#) where 6 is a random event. The
terms of the polynomial are functions of £(6) and are

thus functionals. Many types of random variables
can be used: for example, £(6) can be a Gaussian
variable associated with Hermite polynomials.

The original form of Polynomial Chaos was re-
stricted to expansions in Hermite polynomials. Xiu
and Karniadakis?® generalized this concept to ex-
pansions in Askey polynomials, e.g., Laguerre poly-
nomials for random variables with a Gamma dis-
tribution, and Jacobi polynomials for Beta distri-
butions. Obviously, the convergence rate, and thus
the number of terms in the expansion required for a
given accuracy, depends both on the random process
to be approximated and on the choice of expansion
functions.

We confine ourselves to Hermite expansions in the
present work. Using this approach, each dependent
variable of the problem is expanded as, say for the
velocity u:

u(z,t,0) = Zui(wv t) \111(5(6‘)) : (1)
=0

For practical simulations, the series has to be trun-
cated to a finite number of terms, hereafter denoted
Npce. This framework remains valid also for multi-
ple random variables, including uncorrelated or par-
tially correlated random variables. In that case, the
dependent variables of the problem are functions of
several independent random variables and £ is now
a vector. The expression for the multidimensional
Hermite polynomial or order n, H,, is

Hn(énav&n) — (—1)”6% e o _%fol

The general expression for the Polynomial Chaos
is given by

Npc
u(a, t,0) = > ui(x,t) Ui(£(0)) , (3)
i=0
with the number of terms Npc determined from
|
Npo 41 = et 2ot J,rp”‘;)' , (4)
Npe! Ppe!

where p,. is the order of the expansion and n,. the
dimensionality of the chaos, i.e., the number of ran-
dom variables. (Note that the dimensionality of the
chaos is not the same as the number of physical di-
mensions of the problem.) It follows that Npc grows
very quickly with the dimension of the chaos and the
order of the expansion.

In the case of the Hermite polynomials, the zeroth-
order term represents the mean value and the first-
order term the Gaussian part, while higher orders
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account for non-Gaussian contributions. The inner
product in the stochastic space is expressed as

(1) F2(€) = / T L) REwE) de. (5)

where the weight function w(§)
dimensional normal distribution

is the npc-

1 14T
_ -8 ¢
w = —ee 2 . 6
€)= = (6)
In the Lo-norm, we thus get
(W, Uj) = (UF) 6y, (7)

where 0 is the Kronecker operator. The statistics
of any order for a variable or set of variables can
be determined from their Polynomial Chaos expan-
sions.?®

In the Stochastic Collocation method for one ran-
dom variable, the finite expression corresponding to
(3) is

Nq
u(x, t, ) = Zui(:n, t) hi(a) , (8)
i=0
where « is an artificial variable introduced to facil-
itate the collocation process (see below), h; is the
Lagrange interpolating polynomial corresponding to
the collocation points in a-space, and N, denotes
the degree of the polynomial. Our development of
the Stochastic Collocation method is driven both
by our desire to obtain an accurate but less expen-
sive alternative to Polynomial Chaos for computing
uncertainty propagation and to widen its field of ap-
plicability to any form of nonlinear models.

In Section 3 we furnish the governing equations
and uncertainty description for quasi-1D nozzle.
The subsequent section covers the discretization pro-
cedures. Section 5 presents representative results for
quasi-1D nozzle flow using Polynomial Chaos, and
compares its computational cost with that of the
Stochastic Collocation method.

Stochastic Quasi-One-Dimensional
Nozzle Flow

As a first step in evaluating the stochastic PDE
approach to uncertainty quantification for compress-
ible, turbulent flow, the Polynomial Chaos and
Stochastic Collocation techniques were applied to a
quasi 1-D nozzle flow. The physics of the phenom-
ena involved in a nozzle flow are well understood,
and the configuration is simple enough to allow fo-
cusing on the stochastic treatment rather than on
numerical problems, making this configuration an

appropriate choice. Mathelin and Hussaini®® pre-
sented initial results for inviscid quasi 1-D nozzle
flow using Polynomial Chaos, and Mathelin, Hus-
saini and Zang®* presented a more extensive discus-
sion of the inviscid flow application, including some
Stochastic Collocation results. Here we add both
viscosity and a 2-equation turbulence model to ex-
plore the issues in extending this methodology to
the full three-dimensional, compressible, Reynolds-
averaged Navier-Stokes equations.

Laminar equations

The equations for laminar, viscous, quasi 1-D noz-
zle flow in conservative form are

Qt +F, =8, (9)
where

p A
puA
pE A

puA

3= o
——putA+(y—1)pFEA
—(3 1) Adyu

’ypuEA—’YT_lpugA
~0= M ) Ao, (B-%)
0

(y-1) [pE—%} 0A/0x | (10)
0

with p the density, u the velocity, A the nozzle cross-
section area, and E the total energy; -y is the specific
heat ratio (y = 1.4 for diatomic gas), p the laminar
dynamic viscosity, A the laminar thermal diffusivity,
R the ideal gas constant, and M the fluid molar
mass. The static pressure P has been removed from
the above equations by making use of
P 1 5
E (7_1)p+2u . (11)

Turbulence equations

The turbulence model considered here is the stan-
dard 2-equation k — ¢ model. The reasons for that
choice are that considering the geometry and the
quasi 1-D assumption, there is no need for a so-
phisticated turbulence model. Meanwhile, the k — €
model has features which also allow us to study
the impact of uncertainty in the model coefficients
(Cy,Ce, and C.,) upon the simulated field behavior
and characteristics.
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The second and third components of F' in (10) are
modified by replacing the (% 1) term by

(G ut2om) (12)

and the term () by

vt

A
( B

) - (13)

respectively, where v; is the turbulent kinematic vis-
cosity, and the turbulent Prandtl number Pr; = ‘/\L—:
is assumed constant.

To these must be added the k— e model equations,

which reduce to
8 - 8 Vg 8]{3
py (puk A) = 2 {pA <V+ U_k> %}

ou\>
+2p1 A E —peA (14)

and

0 0 Vi Oe
%(pUEA)—%[pA <V+O'_€) 8_957]

u\” 2
+2 C, %thA <6—z> —Ce, p%A (15)

for the steady state. Here, k is the turbulent kinetic
energy, and € is the turbulent dissipation rate. The
turbulent viscosity coefficient is defined by

k2
vy = Cp‘ ? . (16)

The standard values of the turbulence model coef-
ficients are C¢, = 1.44,C, = 1.92,C, = 0.09, 04, =
1.0 and o = 1.3.

Nozzle geometry uncertainty description

One source of uncertainty is in the nozzle shape,
due to unavoidable manufacturing variability. Let
A(x) be Gaussian and partially correlated along the
x direction following the covariance:

o _lzi—=]

Can(xr,22) =0"¢ U (17)

where b is the correlation length and o2 the associ-
ated variance. The Karhunen-Loeve decomposition
is used to represent the stochastic process in the
standard manner. See Ref. 34 for more details on the
Karhunen-Loeve expansion for this particular prob-
lem.

Test problem

The problem studied here is that of a supersonic
diverging nozzle, as illustrated in Figure 1. The
inflow conditions are a Mach number of 1.2, a 1-
atmosphere static pressure and unit density. The
nozzle starts at x = 0.3 m and ends at x = 5.5
m. Uncertainty is considered to arise from noz-
zle geometry, inlet boundary conditions (pressure,
velocity and density) and turbulence model coeffi-
cients. Here, we consider b = 20 and ¢ = 0.05 as
describing the nozzle variability in Eq. (17). Due to
the rapid decay of the eigenvalues of the Karhunen-
Loeve expansion, only the first two eigenfunctions
are retained in the expansion which describes the
nozzle geometry uncertainty. The resulting “fuzzy”
cross-section area is plotted in Figure 2.

15

15

1 2 3 4 5
x

Fig. 1 Nozzle cross-section mean value along the
streamwise distance.

§
i

Fig. 2 Stochastic cross-section area Probability
Density Function (PDF).

For turbulent flow, the additional inflow condi-
tions are k = 253 m%.s72 (5 % turbulence intensity)
and € = 11,500 m2.s73. The mean value (from the
turbulence point of view) results for turbulent flow
are indistinguishable graphically from those for the
inviscid flow.
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Discretization
Physical space

The quasi 1-D equations are discretized using the
spectral element method combined with a fourth
order Runge-Kutta scheme in time. This spatial dis-
cretization is consistent with the spectral expansion
involved in the Polynomial Chaos technique.

For simplicity, we will discuss only the inviscid
problem in detail. The laminar version of Equation
(10) is projected onto a spectral and stochastic basis
and the Galerkin technique is applied. The spectral
space is spanned by Chebyshev polynomials on the
nodal points (in local coordinates T € [—1;1]):

Vne|0;N]CN, (18)

T cos(ﬂ-n)
Ty = —_—
N

where N is the number of points within each ele-
ment.

The interpolants of variables, say wu, in spectral
space read as

N
= un(t) hn(T) | (19)
n=0

where

2 _ _
hn(x) = N Z Tm(xn) Tm(x) > (20)

= Cn Cm
with T}, the Chebyshev polynomials and ¢; such as

;=2 ie{0;N} CN (21)

¢ =1 i€]0; N[ CN. (22)

Polynomial Chaos

Similarly, in the stochastic space,

u(z,t,0) = Z wi(x, ) Wi (£(0)) - (23)

The following equation for the flux component of the
momentum equation illustrates the computational
complexity of the discretization for just the inviscid
problem

Q
2
k)
Q
2
b
Q
2
b
Q

oF Np N N N
5 = ‘ > 2>

=0 T n=0 m=0 0=0

<
Il
o
™
Il
o
Il
o

3 —
T’ypzn'u]mukooy

J
|:(hn7hm7h07h 8Ak (( hm:htnh )

Ohm Oh,
+ (hn7 W7h07h1)) + <h7l7hm7 %7}@))]
N

Uy U, Uy)

J
(W W Wy, W) [(hm By hop)

Ohn Ohm
A ((%,hm,hp + (hn, W,hp))}@ﬁl)

The scalar products in the spectral space are de-
fined by, say, for (hy,, hum, ho):

(hn7 hm7 ho) = [1 hn(f) hM(f) ho(f) dz
N

N N
8 Ta In Tb .Im) T (EO)
N{%%% €4 Cb Cc Cn, Crm, Co
1

/_ 1Ta(f) Ty(Z) T.(Z)dT .  (25)

In the stochastic space, we have for a 2-D Polynomial
Chaos, e.g. (U; U; Uy T)):

(U; O Uy, Uy) =

el

The full equations for the inviscid problem are
available in Ref. 34. The nonlinearity in the inviscid
momentum flux results in a 7-dimensional summa-
tion in Eq. (24). Four of these sums are due to
the Polynomial Chaos expansion, and would remain
even for a simple finite-difference spatial discretiza-
tion.

The equations for the turbulence quantities vy,
k and e are given in the appendix in (31, 32, 33).
The equation (33) for the turbulent kinetic energy,
€, contains a 12-dimensional sum, with seven of these
due to the Polynomial Chaos terms. The stochastic
collocation method presented in the following sub-
section was, in part, developed to reduce the cost of
these multi-dimensional summations.

U, ;U Uy e 28 Sdg . (26)

Stochastic Collocation

Let a and b be two independent random variables.
In the Polynomial Chaos method, the finite series for
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each variable would be expressed as, say, for a:

Npc

a = Z aZ\I/l(f) N (27)
=0

and the product ab would be

Npc Npc

ab="" > aib;Ui(€)T,(¢) . (28)

i=0 j=0

(Here we drop any dependence upon z and ¢ and
concentrate on just the random variable ¢ without
reference to the random event parameter 6.)

The usual Galerkin truncation yields for the ex-
pansion coefficients of the product ¢ = ab:

Npc Npc
(able = > > aib; (W, 0, W) Vk € [0; Npo] C N.
i=0 j=0
(20)
Therefore, computing the Npc+1 coefficients of the
product ab theoretically takes of order NI%C opera-
tions and the complexity becomes even greater for
cubic products. Moreover, this method cannot eas-
ily handle highly nonlinear equations, e.g. involving
geometric functions. In particular, this is of critical
importance in case the equations are solved using
the popular discontinuous Galerkin spectral element
method. This method requires a Riemann problem
to be solved at each interface between two adjacent
elements. Solving the Riemann problem involves
non-linear equations, comprising geometric and dis-
continuous functions (see Sod,¢ for example). The
stochastic collocation scheme is thus needed.

The usual spatial collocation consists in project-
ing the equations into the physical space (). But
the stochastic space and its random variable coun-
terpart # have limited physical meaning and the
spatial scheme cannot be directly transformed. To
deal with this barrier, Mathelin and Hussaini®® de-
veloped a “stochastic collocation” method. For the
example given above, the method consists of the
following. Starting from the PDF of a, construct
the cumulative distribution function (CDF) of a.
Use the (monotonic, one-to-one) CDF (after linearly
mapping its range from [0,1] to [-1,1]) as a map-
ping to transform the random variable ¢ from its
space (] — 0o, +oo] for the distributions used in this
work) into the artificial variable o € [-1,1]. Com-
pute the Nyth-order Legendre polynomial expansion
of the stochastic part of a in the new variables
«, using the standard Gauss-Legendre quadrature
points. Perform a similar process on b. Then use
Gauss-Legendre numerical integration to compute
the counterpart of (29) in a-space. This produces

the stochastic collocation approximation to the CDF
(albeit mapped to [—1,1]) of the product (28). Fi-
nally, map this function back to [0, 1], and differen-
tiate it to obtain the desired PDF of the nonlinear
term. The cost of this process is linear in Ng, re-
gardless of the nature of the nonlinear term.

Mathelin and Hussaini®® demonstrated that this
method successfully solved a stochastic Riemann
problem in which the initial state contained a dis-
continuity, but the variables had prescribed PDFs
rather than being deterministic. There are numer-
ous open issues with the stochastic collocation ap-
proach, especially on how best to perform the trans-
formations. At present, a brute-force approach with
N, = 200 has been used to demonstrate that the
method works.

Sample Results

Polynomial Chaos validation

The Polynomial Chaos (PC) approach was first
compared to Monte Carlo simulations for the invis-
cid problem. The method used here is the regular
MC method and does not take advantage of any
accelerating technique. All the inlet conditions are
set Gaussian and fully correlated. The cross-section
area is here assumed deterministic. Monte Carlo
simulations are carried with over 9 million indepen-
dent samples while the Polynomial Chaos is 1-D,
second order, i.e., there is one independent random
variable and second-order Hermite polynomial ex-
pansions are used.

Figure 3 shows the comparison between the Prob-
ability Density Function (PDF) obtained from the
Monte Carlo and Polynomial Chaos techniques for
the density and velocity at the outlet of the nozzle.
The density (and pressure) PDFs remain approxi-
mately Gaussian at the nozzle exit while the velocity
PDF becomes skewed due to non-linearity in the
Euler equations. It can be seen that an excellent
agreement between the two techniques is achieved,
especially for the density where the two curves al-
most match. For the velocity, the agreement is very
good except in the left tail region, indicating the
need for higher order in the PC expansion to im-
prove the approximation. Meanwhile, this example
clearly demonstrates the ability of the PC technique
to accurately propagate uncertainty throughout the
flow, even with a very limited number of terms in
the expansion (3 terms in this case). Considering
the difference in the CPU time required (1.7 x 10° s
for MC, 70 s for PC), the speed-up ratio is approx-
imately 24,000, hence making the PC a much more
effective alternative to the Monte Carlo technique for
this case. The cost of a single inviscid computation
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Fig. 3 Outlet probability density function. 1-D
2nd order Polynomial Chaos (solid line) vs Monte
Carlo (dots). Arbitrary units.

using 1-D, second-order PC takes roughly 13 times
longer than a single inviscid, deterministic solution.

2-D stochastic simulations

When the random variables of the problem con-
sidered are decoupled or, at most, only partially
correlated, the stochastic process must be described
using several independent random variables £. To il-
lustrate this more general problem, a 2-D, 2nd-order
PC inviscid simulation is reported in this section.
The inlet pressure and velocity are both assumed un-
certain with no correlation while the inlet density is
considered to be deterministic. Inlet pressure uncer-
tainty is spanned along the stochastic dimension &;
while velocity uncertainty is spanned along dimen-
sion &. The nozzle shape, A, is assumed uncertain
as well and is expanded in a 2-D Karhunen-Loeve
series. All variables are now expanded in 6 terms

0 .
0.1 0.15 0.2 025 03 0.35 04 045 05

560 580 600 620 640 660 680 700 720 740 760

a) Velocity / Pressure.

b) Velocity / Density.

Fig. 4 Distribution of the covariance.

within the stochastic space.

In Figure 4, the covariance distribution is plot-
ted for u — P and u — p. Since all variables are
set independent at the inlet, the covariance is zero
at that point for all combinations. Downstream,
coupling effects spread the uncertainty across the
different variables, and the covariance evolves to-
wards a steady state near the outlet of the nozzle.

Turbulence simulation

Four separate viscous, turbulent cases have been
run. In each case the PC is 1-D, second order. In
each case the relevant variable is assumed Gaussian:
(a) the inlet velocity uine: has a mean value of 450
m.s~! with a 10 m.s™! standard deviation; (b) the
coefficient C}, has a mean of 0.09 with a 10% stan-
dard deviation (=0.009); (c) the coefficient C¢, has
a mean of 1.44 with a 0.1 standard deviation; and
(d) the coefficient C,, has a mean of 1.92 with a 0.1
standard deviation.
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The effects of these uncertainties upon the mean
values of p, u and P are negligible. A more notice-
able effect is upon the deviation of the turbulent flow
variables k£ and € from their deterministic values.
These are illustrated in Figure 5. The inlet veloc-
ity uncertainty affects the turbulent kinetic energy
and the turbulent dissipation rate to about the same
extent. The uncertainty in the modeling parameter
Ce, has its greatest effect upon the turbulent dissi-
pation rate, whereas the paramter C), has a strong
effect upon the turbulent kinetic energy. The uncer-
tainty in the modeling parameter C¢, has a much
smaller effect than the uncertainties in the other
three quantities.

Yinlet
"

L L L
0 1 2 3 4 5 6
x

a) Turbulent Kinetic Energy.

Yinlet

0 1 2 3 4 5 6
x

b) Turbulent Dissipation Rate.

Fig. 5 Distribution of the deviation of the tur-
bulence quantities.

Relative cost of Polynomial Chaos and
Stochastic Collocation

The most complex nonlinearity arises for the third
component of the inviscid momentum flux (24),
which requires a 9-dimensional summation. Five
of these sums are due to the Polynomial Chaos ex-
pansion, and would remain even for a simple finite-

difference spatial discretization. Thus, the cost of
the stochastic part of the Polynomial Chaos method
for the quasi-1D nozzle problem scales as (Npc+1)5.
In contrast, the cost of the Stochastic Collocation
method scales linearly with Ny. For the turbulent
case, the stochastic part of the Polynomial Chaos
method scales as (Npc + 1)7, whereas, the cost of
the Stochastic Collocation Method still scales lin-
early with IV;. The precise coefficients in front of
these scaling terms are very problem dependent. We
illustrate the relative cost of the two methods for
computations with a single stochastic variable using
either Npc+1 = 4 for third-order Polynomial Chaos
(see (4)) or N, = 200 for Stochastic Collocation. In
the first row of Table 1, we present CPU timings (in
seconds on a PC) for the two methods on the in-
viscid quasi-1D nozzle problem with N = 31 points
in physical space (15 elements and 3 points per el-
ement). Clearly, the Stochastic Collocation method
provides a significant reduction in cost. The sec-
ond row gives the timing of the Polynomial Chaos
method on the turbulent problem. Results for the
Stochastic Collocation method are not yet available
for the turbulent problem, but we anticipate that the
cost of the Stochastic Collocation computations for a
turbulent case will be a full order of magnitude lower
than for Polynomial Chaos. The gap between SC
and PC methods will be even larger when comparing
simulations with two independent random variables.

Deter. | PCip | SCip PCsop
inviscid 19 1,760 298 93,600
turbulent 22 3,484 | N/A | 185,286
Table 1 CPU time requirements (seconds on a
PC)

Concluding Remarks

The major barrier to the application of tradi-
tional sampling methods to uncertainty quantifica-
tion in CFD is the explosion in computational cost.
Stochastic methods such as Polynomial Chaos and
Stochastic Collocation hold the promise of making
uncertainty quantification feasible, at least for a
small number of random variables. The Stochastic
Collocation method appears to have distinct advan-
tages over the more established (but still relatively
novel) Polynomial Chaos approach. However, con-
siderable work is needed to make the Stochastic
Collocation both more efficient and more rigorous.
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Appendix
The equations on the following page give the full
Galerkin Polynomial Chaos expressions for vy, k, €
and a representative scalar product in the spectral
space. In the stochastic space, we have for a 2-D
Polynomial Chaos, e.g.,

<V, Vv, . v, ¥, >=

o [e’e] 1T
ﬁf—w‘[—wq]a\l}b\l}c\yd\yee 2 € st
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typical inner product:
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